The Fall of the Labor Share and the Rise of Superstar Firms

by David Autor, David Dorn, Lawrence F. Katz, Christina Patterson and John Van Reenen Presenter: Benedikt Dengler

European University Institute

October 2017

This Paper

motivation

- Global fall in labor share well documented, but less well understood
- Investigating labor share using establishment micro data enables closer look into underlying economics

'superstar firm' hypothesis

- Many markets characterized by "winner-takes-most"
- Large firms with higher profits and lower labor share
- ► If globalization/technology increasingly favor industry leaders:
 - ⇒ market concentration ↑
 - \Rightarrow aggregate labor share \downarrow

Potential Explanations for Concentration

- Check Technology, Trade, business dynamism, computer investment, routine labor exposure
- Finding: mainly driven by technology

This Presentation & Relation to Our Series

- ▶ Paper on reading list due to emphasis on technology as driver in AER p&p version
- ► Focus in the end: empirical exploration of aggregate macroeconomic trends
- ► This focus ties into a growing literature
- Question in our context: What are potential channels for technology to impact economy?
- ► This presentation: overview of current macroeconomic trends
 - Autor et al. in detail
 - De Loecker and Eeckhout in brief
 - Common themes and relation to technology
 - Outlook

Autor et al. modeling framework: Sketch – Environment

- ▶ Value-added production function: $Y_i = A_i V_i^{1-\alpha} K_i^{\alpha}$
- ▶ TFPQ term A_i heterogeneous across firms
- ▶ Crucial: higher A_i → higher input levels, higher sales
- lacktriangle fixed cost in terms of labor F, i.e. total labor L=V+F
- ► factor markets perfectly competitive
- product markets imperfectly competitive
- lacktriangleright fixed entry cost κ for drawing productivity parameter

Modeling framework: Sketch (2) – Labor Share

 from static FOC for labor, labor share in value added derived as

$$S_i \equiv \frac{wL_i}{P_i Y_i} = \frac{1 - \alpha}{\mu_i} + \frac{wF}{P_i Y_i}$$

- ▶ Lower labor share if
 - higher markup \rightarrow generally constant or increasing in A_i , depending on model of competition
 - higher output \rightarrow generally increasing in A_i
- ▶ Generally: shocks favoring high A_i firms will skew distribution further and lower aggregate labor share, e.g.
 - increase in consumer sensitivity to price/quality
 - increase in fixed cost of production
 - increase in fixed cost of entry

Modeling framework: Sketch (3) – testable implications

- ► Version of the model: monopolistic competition
- ► Exercise: increase in product market competition product substitutability $\rho \uparrow$
- ► Model predictions:
 - 1. within-industry sales concentration ↑
 - fall in labor share mainly driven through between-firm reallocation rather than within-firm changes
 - 3. in industries with highest Δ in concentration, labor share will drop most
 - 4. effects should not be confined to the US

Data

- detailed US and (less) detailed international data
- ▶ here: focus on US
- ▶ quinquennial economic census, 1982-2012
 - 6 sectors:
 - manufacturing/retail/wholesale/services/finance/utilities
 - 80% of total private sector employment
 - assign plants to time consistent industry concordance based on 1987 sic codes
 - 676 industries, of which 388 manufacturing
 - variables (all industries): annual payroll, employement, output plus firm identifier
 - add. vars (manufacturing): value added
- ► additional data:
 - KLEMS data for European countries plus for US intermediate inputs (services)
 - comtrade data on imports to adjust for size of domestic market
 - ECB CompNet data, firm level, covering European markets
 - Orbis data on european countries

Empirical Methodology

Correlation analysis

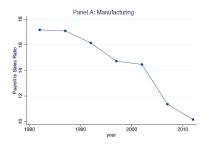
Regress labor shares on sales concentration changes

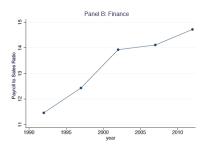
$$\Delta S_{jt} = \alpha \Delta CONC_{jt} + \tau_t + u_{jt}$$

- τ_t full set of time dummies
- standard error clustered at industry level

Decomposition of changes

- ► Establish importance of within- and between-firm changes in labor shares
- ► Define aggregate labor share in levels as


$$S = \sum \omega_i S_i = \bar{S} + \sum (\omega_i - \bar{\omega})(S_i - \bar{S})$$


- ω_i : firm's share in industry value-added, $\sum \omega_i = 1$
- \bar{S} unweighted mean industry labor share
- In changes:

$$\Delta S = S_2 - S_1 = \underbrace{\Delta \bar{S}}_{\text{within}} + \underbrace{\Delta \sum (\omega_i - \bar{\omega})(S_i - \bar{S})}_{\text{between}}$$

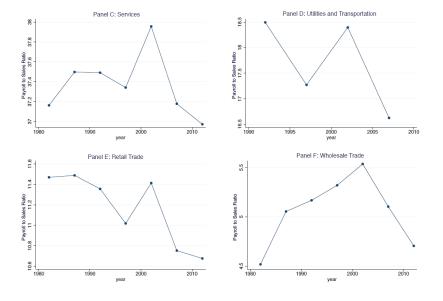
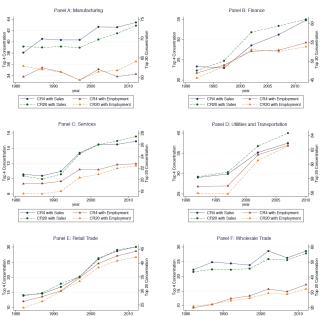

Evidence 1: Labor Share Concentration – Manuf/Finance

Figure 3: Average Payroll-to-Sales Ratio



Evidence 1: Labor Share Concentration – other sectors

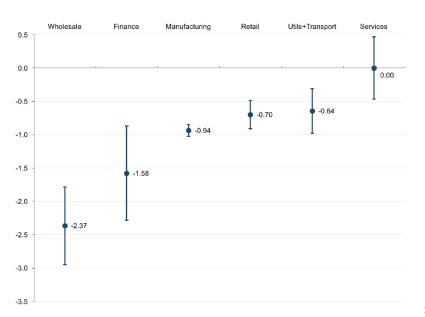

Evidence 2: Sales Concentration

Figure 4: Average Concentration Across Four Digit Industries by Major Sector

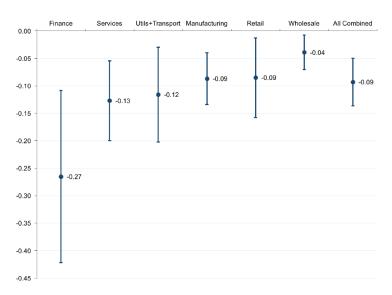

Evidence 3: Labor Share and Firm Size

Figure 5: The Relationship Between Firm Size and Labor Share

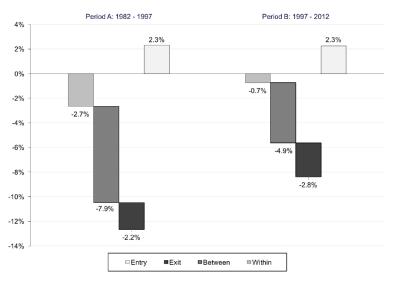

Evidence 4: Δ Labor Share and Δ Concentration

Figure 6: The Relationship Between the Change in Labor Share and the Change in Concentration Across Six Sectors

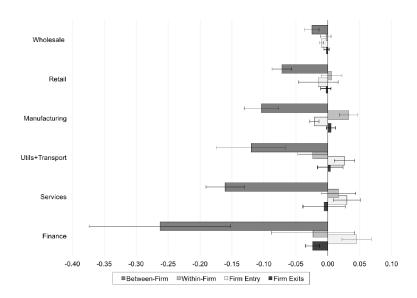

Evidence 5: Decomposition of Δ Labor Share

Figure 9: Melitz-Polanec Decomposition of the Change in Labor Share in Manufacturing

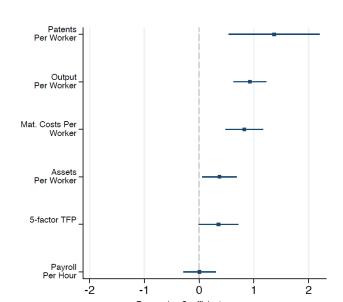

Evidence 6: Relating Δ LS, Δ Conc. to between-within

Figure 11: Regressions of the Components of the Change in Labor Share on the Change in Concentration

Evidence 7: Explaining Corr(Δ LS, Δ Concentration)

Figure 14: Change in Concentration in U.S. Manufacturing and Change in Industry Characteristics

Evidence 8: Explaining Corr(Δ LS, Δ Concentration)

Table A.6: The Labor Share and the Rise in Chinese Imports

_	Sales (1)		Wages (2)		Value Added (3)		CR4 (4)	CR20 (5)	HHI (6)		Labor Share (7)		Payroll- to-Sales (8)	
OLS Estimates														
Sample 1: 1992-2012														
5 year Changes	-1.967	**	-0.485	~	-0.805	*	0.563	0.234	1.630		7.070	*	2.034	
	(0.76)		(0.28)		(0.36)		(4.66)	(5.11)	(2.12)		(3.16)		(1.85)	
10 year Changes	-1.717	*	-0.487		-1.026		-12.514	-2.577	-4.780		13.634	**	5.506	
,	(0.75)		(0.67)		(0.89)		(10.48)	(11.80)	(4.20)		(3.16)		(3.54)	
V Estimates														
Sample 1: 1992-2012							ı							
5 year Changes	-3.693	**	-0.855	*	-1.156	**	6.027	4.765	6.814	*	6.695	*	2.457	
	(1.42)		(0.36)		(0.42)		(5.07)	(4.94)	(3.38)		(3.24)		(1.83)	
10 year Changes	-4.553	**	-1.043		-1.788	~	-1.973	11.178	4.962		16.375	**	8.067	
	(1.75)		(0.80)		(0.98)		(13.60)	(13.76)	(7.49)		(3.24)		(3.72)	
Sample 2: 1992-2007														
5 year Changes	-2.667	**	-1.125	**	-1.237	**	16.295 ~	10.442 *	12.681	*	0.321		-1.29	
	(1.00)		(0.41)		(0.42)		(9.00)	(4.56)	(5.90)		(3.24)		(1.48)	
10 year Changes	-3.024	**	-1.961	**	-2.314	**	20.47	11.974 ~	18.405	*	6.443		0.21	
	(1.01)		(0.73)		(0.81)		(15.22)	(6.99)	(9.22)		(6.05)		(1.70)	

Trade and IV Strategy

- ► Previous evidence links labor shares and import intensity (Elsby, Hobijn and Sahin, 2013, Brookings)
- ► Redo this exercise here, focus on manufacturing data
- ► Same IV strategy as in Autor, Dorn and Hanson (2013, AER)
 - Instrument US import shares from China with Chinese import shares of 8 European countries
 - Underlying concern: import shares correlated with industry demand shock
 - since demand shock likely to have direct employment impact,
 OLS estimates potentially biased
 - Aim with IV: focus on variation in Chinese import demand driven by Chinese supply shocks, orthogonal to US demand
- ▶ positive result opposite of EHS13
- explanation: main driver manufacturing as opposed to trade

Conclusion & Comments

Conclusion

- Investigate fall in labor share using firm level data
- ► Sketch a model of 'superstar firms' as explanation
- Show that micro data patterns support predictions from the theory
- potential explanation: technology driven

Comments

- primarily descriptive paper
- underlying economic mechanisms only touched upon
- complementary literature also pointing to firms as drivers

Complementary literature: De Loecker and Eeckhout (2017)

- ► estimate markups for public US firms since 1960s
- ► Findings:
 - markups have gone up from 20% up to 1980 to >60% in 200s
 - economy wide, driven by small firms
 - within industries, driven by large firms
 - indicates that firm size distribution differs across industries
 - markup increase driven by top end of markup distribution, i.e.
 high markup firms increase markups even further.
- Explanations: Market power vs technology
 - variable vs fixed costs of production
 - but: profit measures tightly related to markups
- ► Like Autor et al.: Market concentration story

Why has concentration/market power gone up?

- ▶ Open question
- ► loose list of speculative answers
 - Increased rate of innovation: first-mover advantage
 - Increased importance of network goods
 - Deregulation
 - ...
- ▶ How might AI/technological progress come into play?
 - (potentially large) fixed cost of adoption
 - access to training data
 - scalability

How to move on from here? Bigger Picture

How to define AI/technological progress?

- ▶ Literature so far: Al does things only humans could do
 - task based framework, focus on labor markets
 - race between HK/machines, looming immiseration
 - more: e.g. Sachs and coauthors (2012, 2015)
- ▶ Potential alternative: Al makes capital *more flexible*
 - already happening: 3D-printing, platform based cars, etc.
 - implications for product differentiation/customization \rightarrow consumer surplus?
 - implications for boundary of the firm/IO/market structure?
 - possible framework?

How to move on from here? Next presentations

► forthcoming NBER volume from recent conference on Al and Economics http://papers.nber.org/books/agra-1

Literature

[5] [[5]] Jeffrey D Sachs, Seth G Benzell, and Guillermo LaGarda. Robots: Curse or blessing? a basic framework.

[4] [4] Michael WL Elsby, Bart Hobiin, and Avsegül Sahin. The decline of the us labor share. Brookings Papers

on Economic Activity, 2013(2):1-63, 2013.

Technical report, National Bureau of Economic Research, 2015.

 [6] [[6]] Jeffrey D. Sachs and Laurence J. Kotlikoff. Smart machines and long-term misery. Working Paper 18629, National Bureau of Economic Research. December 2012.